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I. Phys: Condens. Matter 4 (1992) 943-3954. Printed in the UK 

The Aharonov-Bohm effect in a mesoscopic ring of diluted 
magnetic alloy 

v I h311'ko 
his-Planck-lnstitut fiir kstk6#perforschun& Hochkld-Magnellabor,, 25 Avenue des Mar- 
lyn, Orenoble. France and ?heow Department, Institute of Solid State Physic%, 142432 
Qlemogolwka, Mosoow Dislrid, Russia 

-Ned 6 Februaly 1991, in Bnal form 19 December 1991 

AbrlracL ?he spin dynamics of magnetic impurities is shown la play a crucial rule in 
mesoscapic effects. It follows h m  lhis analysis lhat the quantum magnetwnduclance 
Osdllations in a mesoscopic ring of a diluted magnetic alloy are gradually suppressed 
m lhe paramagnetic regime, whereas a strong magnetic Seld forbids spin-flip processes 
and mtores the mesosmpic Aharonov-Bohm &lalions with an amplitude limited by 
the efficiency of electron escape to lhe bulk ?his &ecl is examined analytically using 
a model of a quasi onedimensional ring joined la the eledmdes tunnelling omlam 
OT short leads. 

L Introduction 

The quantum interference of electron waves in a small metallic ring is the origin 
of its transport properties' sensitivity to the enclosed flux 4 of a magnetic field 
[I]. An additional phase 'p = 2 ~ 4 / 4 ~ ,  due to the electron moving along different 
paths enclosing the magnetic flux 4, raises the q50 = h c / e  periodic dependence 
of all the kinetic coefficients of a circlet prepared from one-dimensional (ID) wires 
[I, 21 (the Aharonov-Bohm effect). This statement is based on general quantum 
mechanical principles and is valid in the pure as well as in the dirty limits. In pure 
systems the magnetoconductance oscillations are determined only by the geometrical 
factors. In disordered systems multiply scattered waves can reach the same point via 
different classically allowed diffusive paths with random phases a q i r e d  in impurity 
collisions; they therefore form a complicated interference picture dependent on a 
random potential realization in a sample. Thus, the magnetoconductance oscillations 
in a ring of impure metal contain a component with an amplitude and shape that 
reflect the features of the scatterers' distribution. This sample-specific conductance 
component is usually called a mesoscopic fluctuation [3-51. 

The periodic conductance oscillations also contain a contribution bom self- 
crossing paths with a closed loop circling in opposite directions, namely weak localiza- 
tion corrections to conductance [GI. It gives rise to magnetoconductance oscillations 
with a fundamental period of 40/2, which are identical in macroscopically identical 
conducton. 

It is hown that magnetic scattering on spin impurities plays an important role in 
quantum transport 18, 91, thus the conductance of a system depends on the state of the 
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magnetic scatterers. It was recently predicted theoretically and found experimentally 
that the dynamics of the subsystem of localized spins clearly manifests itself in the 
mesoscopic [1&15] and weak localization [15-17] effects. 

In the present paper we study the influence of spin dynamics of l o c a l i d  spins 
(namely, Korringa's relaxation [SI) on the quantum conductance oscillations in a 
small ring of a diluted magnetic alloy where a sufficient admixture of paramagnetic 
impun'ties causes multiple magnetic scattering for the electrons contributing to current 
formation; thus a single electron spin relaxation length, L,, is shorter than the length 
L of Wires composing the ring. The following analysis is devoted both to the case 
of paramagnetic impurities and to the influence of their alignment in high magnetic 
fields. The spin-glass regime is also discussed to complete the picture. 

For the fortnal description of the Aharonov-Bohm effect in such a system we 
use the Fourier representation of a conductance, G = (G) + 6G (which contains 
both the mentioned regular (G) and sampledependent 6G parts), as a function of 
an enclosed magnetic flux 4. In the weak localization part of magnetoconductance 
oscillations, only even terms are represented, 

while the mesoscopic one contains all integer harmonics, 

6Gk = 6G, + 6Gk co~(Z?rkq5/q5~ + 614~~). (2) 

III a ID ring, (1) and (2) give a picture of osci~~ations in the whole range of mag- 
netic fields. In realistic devices a finite magnetic flux 64 = 4Swire/SrinS penetrates 
inside the wire area. When it exceeds the flux quantum value, 64 > bo, it com- 
pletely changes the interference picture of diffusive electron waves [SI. This results in 
random variations of amplitudes 6Gk and phases 6 q k  from one interval to another 
(AH < H ,  = +,,/Swir,,) in a magnetic field [SI. Therefore, the mean square value, 
(6G2,) of the Wurier coefficients in series (2) is, in principle, a measurable quantity 
(as well as the ensemble averaging ( ) can be replaced by the averaging over different 
independent H ,  intervals). 

Both weak localization and mesoscopic conductance parts show sensitivity to any 
inelasticity in the system. The inelastic suppression of quantum effects in electronic 
transport was studied in detail in the weak localization [SI as well as in the mesoscopic 
[9] theories; in the present paper they will be left out of the discussion. h a t  
means that in the following the inelastic length is supposed to exceed the sample 

k 

dimensions L. We also impose the same restriction on the temperature length 13, 
191: L, = > L. 

A-to the contents of the paper, section 2 is devoted to the qualitative considera- 
tion of spin dynamics effects on mesoscopic magnetoconductance oscillations and to 
the definition of necessary parameters. The results of the perturbation theory calcu- 
lations of (6Gi) values in the free-spin and spin-glass regimes of magnetic impurities 
are reported in sections 5 and 6, respectively. These calculations, as well as the model 
used, are described in detail in sections 3 and 4. The comparison between mesoscopie 
and weak localization contributions to the Aharonov-Bohm effect is presented in the 
appendix. 
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2. ERects of the spin dynamics of impurities on mesoscopic conductance Buctuations 

In the following we consider a metallic ring sufficiently contaminated by mag- 
netic impurities which interact with free electrons by the plain exchange, Ync = 
(S - S ) g 6 ( r  - zimP). Their mncentration n, b assumed to he high enough to raise 
fast single electron spin relaxation by the mte 7;' = g 2 S ( S  +- l )ns /X$z ,  which 
provides a multiple magnetic scattering during the characteristic time r, = L z / D  of 
the electron's diffusive flight through a ring. (Here D denotes the diffusioo coefficient 
and L is the wire length.) In this case most electron paths contain spin-flip events 
and, therefore, an instantaneous form of the mesoscopic part of the ring conductance 
depends on an instantaneous spin configuration of impurities. It has the usual meso- 
scopic scale e a / h  191, but this cannot give an estimation of observable oscillations 
when the temporal evolution of impurity spins has to be taken into account. The 
latter happens because of Koninga's relaxation of localized spins due to their inter- 
action with thermalized electrons, 7;' = Tg2/X;dc$ ,  or with phonons. Moreover, 
this relaxation (with the rate rgl = eVg2/A$dc$) exists even at zero temperature 
due to spin aansfer from impurities to non-equilibrium current electrons. 

Anyway, the spin configuration of a sample changes in time and that gives rise 
to random fluctuations of the instantaneous conductance value. On the other hand, 
an efficient temporal self-averaging of fluctuations tales place, thus reducing the 
mesoscopic DC effects. For example, the mesoscopic conductance fluctuations in a 
long wire with magnetic impurities are suppressed by the factor of ( ~ , / 7 ~ ) ~ / "  [ll] 
when the duration of a measurement exceeds the time scale r,, 

(The latter was found from the condition that the reorientation probability, 
(r , /rK)(rf /rS) ,  of at least one of (r,/rs) impurity spins, on which an electron 
scatters in its diffusion through a sample along a characteristic path, is of the or- 
der of uNty.) Therefore, only a small fraction of the trajectories that do not touch 
spin-Rip events contributes to the Dc-fluctuation formation. An exponentially small 
expectation .of such a trajectory encircling a quasi-lD ring IC times gives a strong 
suppression, 

of all harmonics of mesoscopic magnetoconductance oscillations, even in systems 
without any inelaticity. (Here L, = ( D T $ ) ' / ~  is the spin relaxation length in a 
diffusive regime.) 

This conclusion is valid in all the magnetic fields which are not strong enough 
to orientate the spins of impurities, Hpimp < T.  In the opposite case all the 
impurities have aligned spins. That decreases an effective spin relaxation fate, 
7*-'(H) c 7;1e-HJ'imp/* [20], and one can display the mesoscopic magnetore- 
sistance fluctuations of the universal scale, forcing the magnetic field up to the value 
of H > T/pimp. This looks like just a transition in the amplitude of mesoscopic 
oscillations, as was observed experimentally in artificially contaminated mesoscopic 
semiconductor devices [13] and in rings of diluted magnetic alloys [14, 151. 

In the case of high fields the relations between different harmonics of the 
Ahaxonov-Bohm oscillations are determined by the efficiency of electron escape from 
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a ring to the bulk If the contacts of a ring m the electrodes have a tunnelling char- 
acter, or they are prepared in the form of short leads, then a single parameter, 
Q = G,,,/G,,,,,, can be used to describe the mesoscopic effects. When the pa- 
rameter Q is small, Q < l, it has the meaning of a probability of an electron resting 
in a ring after each flight through a contact region, and the amplitude of any higher 
harmonics in the series (2) is suppressed by the factor CY in comparison with the 
previous one, 

(5) k 6Gk Q . 
Consequently in the next section we study this simplified model to account analytically 
for the electron's escape from a ring in combination with spin-scattering effects. 

3. The perturbation theory calculations 

The consistent derivation of mean square values (6G2,) of amplitudes of different 
harmonics of magnetoconductance oscillations is based on the calculations of the 
correlation function I<(+,+') of two DC conductances taken at different values + 
and 4' of a magnetic flux. The latter can be found from the correlation function 
(I(+, q)I (+ ' ,O) )  of instantaneous current values (V is the voltage drop in a sample), 

and within the perturbation theoty approach (the approximation of p , l / h  > 1) it is 
mainly determined by the diagrams shown in figure 1 [S, 211. As to their analytical 
expression, it can be given in the terms of particle-hole (diffusion) and particle 
particle (Cooperon) Green functions P(d)  and P(e)  and distribution function N ( e ) .  
(We can refer the reader to the reviews [SI for the rigorous delinitions.) 

Figure 1. The main diagrams contributing to the 
cunent-current mrrelation function. Each of them 
corresponds 10 the infinite series summed by the 
means of Dyscn'r equation. This Summation is de- 
spibed in detail in the reviews [S] and thc cxpres- 
sion of the cunent-current mrrelation function in 
terms of diffusion and Cooperons (the ladders) and 
the distribution function N ( f )  (the appendices) can 
be found in 1211. 
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The abovementioned two-particle Green functions satisfy the diffusion-like equa- 
tiOnS 

(7) 
1 

1 

at- D(V-i7;Acd))a+ e k ( 1  +dJe-l'Jl/m) PY)(t,t ';t);+,z') 
C 

= 6(z  - r')6'(t - t') 
{ 

(E$- D ( v - i ~ A c ' ) )  e 

and 

(7') 

2 1  +-(l+cJe-lql 'w) P~)(t),t)';t;r,r') 
7s 

= 6(z - r')6(t) - t)') 

inside wires. Here a magnetic field is accounted for by the gauge term 
rotA(d+) = €I * R'. The coefficients c, and d, describe the difference of spin 
relaxation induced decay of singlet ( J  = 0) and triplet ( J  = 1) Cooperon and 
diffusion modes, respectively; co = -do = 1, c1 = -dl = -1/3. In the limit of 
t) + 0 this difference gives rise to relaxation rates splitting and corresponds to the 
case of a frozen-spin configuration. The temporal evolution of impurity spins due to 
Korringa's relaxation, 

(S~mF'(0)S~mp(t))) = 6,@S(S + l)e-l''l/rK (8) 

is acmunted for by the timedependent factor exp(-lt)l/7k) [ll]. As far as the 
time averaging in (6) extracts the long tail contribution to the correlation function 
Kc+,@), (7) and (7') can be studied only in this limit in a reduced form 

8, - D (V - iKA(d+))2 e + t} F'(d,c) = 6( r  - r')6(t- t'). (9) 
C 

In a mesoscopic system, (9) has to be completed with the boundary conditions at 
the surface and the ends of Wires. The h t  of them have the form of Row zeroing, 
{n(V - i(e/tic)Ad(c),)}P(d,e) = 0, and in a ring prepared of long and thin wires 
they allow us to rewnte (9) as a qUaSi-ID equation. After the time-variable Faurier 
transform it takes the form 

{-iw + 7;' - .;'(a,, - iY,)2 + 7;1(2n64(d~c)/40)2}P(d,C) = 6(+ - +') (10) 

where the dimensionless variables 0 < Gv < 1 denote the coordinates along two 
wires forming a ring (T = 1 means an 'up' and T = 2 means a 'down' semicirclet). 
The phases Y, = hr~r4(d+)/40 are of a gauge origin and valy from zero to 

in up and down semicirclets; +(dl = 4 - @,+('I = 4 + 4'. As was 
determined before, T~ = L z / D  gives the time of a diffusive tlight through a ring. 
Finally, the last term in the left-hand side of (10) originates from the magnetic field 
flux 64 penetrating inside the wires. 

The boundary conditions at the ends of wires (at 15, = 0 and +T = 1) can be 
introduced phenomenologically in the form of continuity and current conservation 
equations, 
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In the former the term a- 'P  takes into a m u n t  the electron's escape to bulk. In 
an open system Q --t 0 and the two semicirclets of a ring are weakly connected. An 
isolated ring is described by the limit of a -+ 00. The chosen boundary conditions are 
rigorous for tunnelling contact of a ring with the electrodes and quite acceptable in 
the case of them being joined by short leads. This model provides a singleparameter 
description of all effects of contacts, avoiding complicated geometrical factors [ZZ]. 

The meaning of a phenomenological parameter a can be clarified by the mm- 
parison of a naively suggested value of an averaged current through the system, 
(I) = V[1/2Gwi, + 2/G,,t,t]-*, that can be calculated within the same phe- 
nomenological approach. The former, 

follows from the solution of the equations representing the distribution function 
N ( r ,  G) of electrons in a ring with boundary conditions at the contacts analogous to 
that in (W), 

8 $ , N ( r , + )  = O  

2&,N = N - N F ( c  + e V / Z )  11, = a 
2 a 8 . , , N = N F ( ~ - e V / 2 ) - N  + = 1 .  

(Here S, is a cross sectional area of each wire, uF is the Fermi density of states 
and NF(c  f e V / 2 )  are the Fermi distribution functions in the bulk.) Thus, (I) = 
2eVGw,,/( 1 + 4a), and it is clear that a is nothing other than the ratio of wire to 
contact conductances, 

a = GwireIGcontact. (1.2) 

In principle, this parameter can be varied experimentally by application of different 
gate wltages, thus changing the contact transparency in semiconductor microdevices 
with joints covered by gates. 

4. Low- and high-field magnetoconductance fluctuations 

The solutions of (10) and (11) can be used to derive the current-current correlation 
function [Zl] 

x { IPy'(w = E - c'; $, +')Iz + IPy'(w = E -  d ;  +, + ' ) I 2 } .  (13) 

From the above-mentioned degeneracy of the decay rates in the long-tail Limit of 
Cooperon and diffusion one can see that their contributions to (13) are similar, 
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thus the correlation function K(4,$') can be separated into a sum of two similar 
additives, 

K(4,6') = W 4  - 4') + K(4 + 6'). (14) 

Each of them can be written as 

where Q,,($) are the roots of the algebraic equation 

F(Q,$ )  = 2a2Q2[cos2Q-cos(2x$/~,)]f2~Qsin2Q+(1-cos2Q)/2 = 0. 

The summation of (15) results in a plain K($) form 

The coefficients ~ ( y , a ) , t & ( y , a )  and v ( y , a )  depend on the decay efficiency of 
electron-electron and electron-hole correlation due to electron escape from a ring 
(parameter a), and due to the reorientation of impurity spins (parameter -y), 

Y' = rf/r, + (2n6d/60)2. (17) 

The former also describes the effect of a magnetic flux penetrating inside the wires. 
Ihe limit of y A: 1 can be used to describe the magnetoconductance oscillations 
locally (within each correlation magneticfield interval) in the regime when a high field 
suppresses spin-flip scattering processes. In this case only the escape to electrodes 
determines the amplitude and the features of the oscillation's shape, and 

K = $1 f 16a + 120a2 f 384a3 4- 480a4]/[(l + 4a + 2 a 2 ) ( 1  + 4a)]' 
U = S a 2 (  1 + 12a + 30a2)/[1 + 1 6 a  + 120a2 + 384a3 + 480a4] 
U = 2 a 2 / ( 1  + 4 a  + 2 2 ) .  

(18) 

In an open system (a A: 1) the oscillations are weak 

In a semi-closed system (a >> 1) they are of ( e 2 / h )  scale and the correlation function 

has a resonant form. It manifests itself in periodically repeated resonant conditions 
for the electron tunnelling between electrodes through single-particle states in the 
ring closed to the Fermi level. The contribution of a single resonant state to the 
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conductance is of the order of (e*/h) .  Thus one can expect that the magnetoconduc- 
tance oscillations have ( e z / h )  amplitude even in an almost isolated ring and look like 
MITOW (of width A+ a 24,a- ' /*/7r)  splashes on the background of an averaged 
small-Mg conductance. 

The conductance fluctuations in the case of a low field (when spin-flip scattering 
in combination with impurity s p h  dynamics works best) are described by the limit 
of y = a > 1 and the oscillations in this case are weak 

Formulae (17) and (20) can also be applied to the analysis of correlation field 
(H,)  behaviour. The latter can be estimated f" the comparison of two additives 
in (19, 2 a 6 & H ) / + ,  - rf/rs; thus it is dear that the width H, of the coherent 
oscillations interval gradually decreases when a magnetic field aligns the localized 
spins. 

5. Relations behveen harmonics of magnetoconductance oscillations 

The calculated correlation functions K($,+') can also be used for a quantitative 
description of experimental data. Namely, the values (6Gi) are the subject of the 
comparison between the above theory and those obtained in measurements, and they 
can be directly derived from the murier transforms of a single-variable function 
K ( 4 ) .  Thus, the mean squares of the amplitudes of mesoscopic Aharonov-Bohm 
conductance oscillations can be found as 

and 

In the low field region, pimpH < T, where the Zeeman splitting of magnetic 
states of impurities b less than the temperature, the amplitudes of all the terms in 
(2) are suppressed and 

In a specific mesoscopic ring the transition to the high magnetic field regime is 
accompanied by the transition from free to frozen aligned states of paramagnetic 
spins. In a magnetic field H > (T/p imP) ln( r r /~ , )  the system behaves similarly to 
that without magnetic scattering The only difference is that the mean square dues 



The Aharonav-Bohm effect 3951 

are formed of independent contributions of spin-polarized electron waves, thus they 
give half of that in magnetically pure materials. 

In addition, it h easy to extend the proposed consideration to system with a 
strong spin-orbit interaction. The latter extracts the contributions of singlet modes 
both in the mesoscopic and weak localization cases and in the paramagnetic regime it 
reduces the amplitudes, G,,,, of mesoscopic effects by a factor of a half, = 
(6Gi)/4. At the same time, the weak localization terms discussed in the appendix 
are negligible compared with mesoscopic terms, as long as the solely surviving singlet 
Cooperon mode is fast decaying (an exponent in (Al) contains a shorter length 
L: = L J f i ) .  

6. lbe Aharonov-Bohm e f k t  in metallic spin glasses 

The analogous behaviour is also specific to conductance fluctuations in the Vicinity 
of a spin-glass transition. An extension of the calculations (6)-(13) to the case of a 
frozen spin field shows that the main contribution to the conductan-nductance 
correlation hrnction is from the singlet diffusion mode, which is not affected by 
magnetic scattering in the T~ -, 00 limit. Thus the mean squares (6G&) in a 
metallic spin glass are half that in a regime of aligned spins, 

and we predict enhancement of conductance oscillations by a factor of fi dose to 
the magnetic field destroying the frozen disordered spin state. 

Besides that, the correlation function K(+,+') contains information about the 
phases of oscillations. The separable form (14) of IC($,+')  represents the mine-like 
oscillations inside the first He interval in the paramagnetic limit (in good agreement 
with the Onsager rules applied to the conductance problem in a non-magnetic 1D 
system). On the other hand, in the spin-glass regime the suppression of the second 
((4 + +')-dependent) term manifests an arbitrary phase of the low-field Aharonov- 
Bohm effect, even in the 1D case. This statement does not contradict the Onsager 
relations: a frozen spin configuration Violates time reversibility independently of a 
magnetic field and opens the way to the Linear magnetoconductance dependence [U, 

The above-mentioned Cooperon suppression in metallic spin glasses immediately 
gives the suppression of weak localization corrections to conductance. Thus the spin- 
glass materials present the exclusive case when the Aharonov-Bohm effect is purely 
mesoscopic in the whole range of magnetic fields. 

241. 

7. Conclusions 

l3 summarize, in the present paper it is shown that the Aharonov-Bohm oscilla- 
tions of the Dc-conductance of a mesoscopic ring of a magnetic alloy are strongly 
suppressed because of the dynamical evolution of the spin configuration of scatter- 
ers. An alignment of paramagnetic spins by a magnetic field, H >> T / k m p ,  forbids 
spin-flip processes and displays magnetoconductance oscillations with an amplitude 
determined by ring contacts with electrodes. Thus the low- to high-field transition in 
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a paramagnetic system is followed by the transition in the amplitude of magnetocon- 
ductance oscillations. One can expect an analogous enhancement of oscillations in 
spin-glass materials close to the magnetic field which destroys the frozen disordered 
magnetic phase. The reported theory gives the quantitative analytical description of 
the Aharonov-Bohm effect in a quasi-lD ring using the minimal number of device 
parameters. 
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Appendix. Weak localization contribution to the Aharonov-Bohm effect 

Finally, we compare the mesoscopic contribution to the Aharonov-Bohm effect with 
the weak localization contribution calculated in the framework of the model (7’k 
(10‘). In these calculations the conventional relation between quantum correction to 
conductance (the sum of the diagrams shown in figure 2) and the Cooperon [7, 81 
was exploited, 

( GwL) = V-I - e D  1 d z  J d q  / d e  VN(f ,  x) 
2 a h L  

x [ PiC)(% -v, € 7  I. x) - 3 P i C ) ( 0 ,  -7, f ,  x, x)] 

and, as it follows from (6’), there exist two regimes of weak localization in magnetic 
alloys depending on Korringa’s relaxation intensity [17]. One of them occurs at the 
lowest temperatures where Korringa’s time ‘ T ~  is much longer than the time T[ of 
diffusion along a characteristic path, which is responsible for the weak localization 
contribution to the Aharonov-Bohm effect. In this case the relaxation of localized 
spins is not sufficient and the decay rates of singlet and triplet Cooperon modes in (7’) 
are split ( 1 / ~ $ )  = 27c1 and l/‘~$) = 2 ‘ ~ ; ’ / 3 ) .  Thus the long living triplet mode 
dominates the quantum corrections to conductivity [SI and at the lowest temperatures 
only the weak localization terms (1) 

determine even harmonics of oscillations. Here L: = m L ,  is the decay length 
of a triplet mode. At higher temperatures an opposite inequality between rX and 
T~ returns us to the case of degenerate decay rates (7%;; = ql) of both Cooperon 
modes [17]; in this case the advantage of weak localization Over mesoscopic terms 
results &om the temperature smearing of mesoscopic effects due to cancellation of 
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Figure 2 The diagram which mnspond to weak Imalization mrrectiolls to mnductance. 

random contributions from uncorrelated spectral intervals [IS]. All in all, we conclude 
that in the mesascopic system with allowed spin-flip scattering, all even harmonics of 
the Aharonov-Bohm effect are of weak localization origin. 

lb compare, in systems with no magnetic scattering the amplitudes of the weak 
localition contribution to magnetoconductance oscillations, 

4eZ 
3rrh (Gzk) = - - -aZk Q < l  

-awl  
(GZk) = --$-1/z (1 - 2 k  

are numerically (when Q K 1) or even parametrically (when Q > 1) smaller than 
those of mesoscopic origin. They are also negligible in the spin-glass regime, as 
follows from the mrresponding Cnoperon suppression 1161. 
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